Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Make a Choice! Knowledge Base Question Answering with In-Context Learning (2305.13972v1)

Published 23 May 2023 in cs.CL

Abstract: Question answering over knowledge bases (KBQA) aims to answer factoid questions with a given knowledge base (KB). Due to the large scale of KB, annotated data is impossible to cover all fact schemas in KB, which poses a challenge to the generalization ability of methods that require a sufficient amount of annotated data. Recently, LLMs have shown strong few-shot performance in many NLP tasks. We expect LLM can help existing methods improve their generalization ability, especially in low-resource situations. In this paper, we present McL-KBQA, a framework that incorporates the few-shot ability of LLM into the KBQA method via ICL-based multiple choice and then improves the effectiveness of the QA tasks. Experimental results on two KBQA datasets demonstrate the competitive performance of McL-KBQA with strong improvements in generalization. We expect to explore a new way to QA tasks from KBQA in conjunction with LLM, how to generate answers normatively and correctly with strong generalization.

Citations (11)

Summary

We haven't generated a summary for this paper yet.