Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

TO-Rawnet: Improving RawNet with TCN and Orthogonal Regularization for Fake Audio Detection (2305.13701v1)

Published 23 May 2023 in cs.SD and eess.AS

Abstract: Current fake audio detection relies on hand-crafted features, which lose information during extraction. To overcome this, recent studies use direct feature extraction from raw audio signals. For example, RawNet is one of the representative works in end-to-end fake audio detection. However, existing work on RawNet does not optimize the parameters of the Sinc-conv during training, which limited its performance. In this paper, we propose to incorporate orthogonal convolution into RawNet, which reduces the correlation between filters when optimizing the parameters of Sinc-conv, thus improving discriminability. Additionally, we introduce temporal convolutional networks (TCN) to capture long-term dependencies in speech signals. Experiments on the ASVspoof 2019 show that the Our TO-RawNet system can relatively reduce EER by 66.09\% on logical access scenario compared with the RawNet, demonstrating its effectiveness in detecting fake audio attacks.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.