Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

UNIMO-3: Multi-granularity Interaction for Vision-Language Representation Learning (2305.13697v1)

Published 23 May 2023 in cs.CL

Abstract: Vision-and-language (VL) pre-training, which aims to learn a general representation of image-text pairs that can be transferred to various vision-and-language tasks. Compared with modeling uni-modal data, the main challenge of the VL model is: how to learn the cross-modal interaction from multimodal data, especially the fine-grained interaction. Existing works have shown that fully transformer-based models that adopt attention mechanisms to learn in-layer cross-model interaction can demonstrate impressive performance on various cross-modal downstream tasks. However, they ignored that the semantic information of the different modals at the same layer was not uniform, which leads to the cross-modal interaction collapsing into a limited multi-modal semantic information interaction. In this work, we propose the UNIMO-3 model, which has the capacity to simultaneously learn the multimodal in-layer interaction and cross-layer interaction. UNIMO-3 model can establish effective connections between different layers in a cross-modal encoder, and adaptively capture the interaction between two modalities at different levels. The experimental results show that our model achieves state-of-the-art performance in various downstream tasks, and through ablation study can prove that effective cross-layer learning improves the model's ability of multimodal representation.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.