Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 28 tok/s Pro
2000 character limit reached

Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning (2305.13664v3)

Published 23 May 2023 in cs.LG and math.OC

Abstract: We propose a new per-layer adaptive step-size procedure for stochastic first-order optimization methods for minimizing empirical loss functions in deep learning, eliminating the need for the user to tune the learning rate (LR). The proposed approach exploits the layer-wise stochastic curvature information contained in the diagonal blocks of the Hessian in deep neural networks (DNNs) to compute adaptive step-sizes (i.e., LRs) for each layer. The method has memory requirements that are comparable to those of first-order methods, while its per-iteration time complexity is only increased by an amount that is roughly equivalent to an additional gradient computation. Numerical experiments show that SGD with momentum and AdamW combined with the proposed per-layer step-sizes are able to choose effective LR schedules and outperform fine-tuned LR versions of these methods as well as popular first-order and second-order algorithms for training DNNs on Autoencoder, Convolutional Neural Network (CNN) and Graph Convolutional Network (GCN) models. Finally, it is proved that an idealized version of SGD with the layer-wise step sizes converges linearly when using full-batch gradients.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.