Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A Model Stealing Attack Against Multi-Exit Networks (2305.13584v2)

Published 23 May 2023 in cs.CR and cs.AI

Abstract: Compared to traditional neural networks with a single output channel, a multi-exit network has multiple exits that allow for early outputs from the model's intermediate layers, thus significantly improving computational efficiency while maintaining similar main task accuracy. Existing model stealing attacks can only steal the model's utility while failing to capture its output strategy, i.e., a set of thresholds used to determine from which exit to output. This leads to a significant decrease in computational efficiency for the extracted model, thereby losing the advantage of multi-exit networks. In this paper, we propose the first model stealing attack against multi-exit networks to extract both the model utility and the output strategy. We employ Kernel Density Estimation to analyze the target model's output strategy and use performance loss and strategy loss to guide the training of the extracted model. Furthermore, we design a novel output strategy search algorithm to maximize the consistency between the victim model and the extracted model's output behaviors. In experiments across multiple multi-exit networks and benchmark datasets, our method always achieves accuracy and efficiency closest to the victim models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.