Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Achieving the Asymptotically Optimal Sample Complexity of Offline Reinforcement Learning: A DRO-Based Approach (2305.13289v4)

Published 22 May 2023 in cs.LG

Abstract: Offline reinforcement learning aims to learn from pre-collected datasets without active exploration. This problem faces significant challenges, including limited data availability and distributional shifts. Existing approaches adopt a pessimistic stance towards uncertainty by penalizing rewards of under-explored state-action pairs to estimate value functions conservatively. In this paper, we show that the distributionally robust optimization (DRO) based approach can also address these challenges and is {asymptotically minimax optimal}. Specifically, we directly model the uncertainty in the transition kernel and construct an uncertainty set of statistically plausible transition kernels. We then show that the policy that optimizes the worst-case performance over this uncertainty set has a near-optimal performance in the underlying problem. We first design a metric-based distribution-based uncertainty set such that with high probability the true transition kernel is in this set. We prove that to achieve a sub-optimality gap of $\epsilon$, the sample complexity is $\mathcal{O}(S2C{\pi*}\epsilon{-2}(1-\gamma){-4})$, where $\gamma$ is the discount factor, $S$ is the number of states, and $C{\pi*}$ is the single-policy clipped concentrability coefficient which quantifies the distribution shift. To achieve the optimal sample complexity, we further propose a less conservative value-function-based uncertainty set, which, however, does not necessarily include the true transition kernel. We show that an improved sample complexity of $\mathcal{O}(SC{\pi*}\epsilon{-2}(1-\gamma){-3})$ can be obtained, which asymptotically matches with the minimax lower bound for offline reinforcement learning, and thus is asymptotically minimax optimal.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.