Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SPARSEFIT: Few-shot Prompting with Sparse Fine-tuning for Jointly Generating Predictions and Natural Language Explanations (2305.13235v3)

Published 22 May 2023 in cs.CL and cs.AI

Abstract: Models that generate natural language explanations (NLEs) for their predictions have recently gained increasing interest. However, this approach usually demands large datasets of human-written NLEs for the ground-truth answers at training time, which can be expensive and potentially infeasible for some applications. When only a few NLEs are available (a few-shot setup), fine-tuning pre-trained LLMs (PLMs) in conjunction with prompt-based learning has recently shown promising results. However, PLMs typically have billions of parameters, making full fine-tuning expensive. We propose SparseFit, a sparse few-shot fine-tuning strategy that leverages discrete prompts to jointly generate predictions and NLEs. We experiment with SparseFit on three sizes of the T5 LLM and four datasets and compare it against existing state-of-the-art Parameter-Efficient Fine-Tuning (PEFT) techniques. We find that fine-tuning only 6.8% of the model parameters leads to competitive results for both the task performance and the quality of the generated NLEs compared to full fine-tuning of the model and produces better results on average than other PEFT methods in terms of predictive accuracy and NLE quality.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets