Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Sequence-to-Sequence Forecasting-aided State Estimation for Power Systems (2305.13215v1)

Published 22 May 2023 in eess.SY, cs.LG, and cs.SY

Abstract: Power system state forecasting has gained more attention in real-time operations recently. Unique challenges to energy systems are emerging with the massive deployment of renewable energy resources. As a result, power system state forecasting are becoming more crucial for monitoring, operating and securing modern power systems. This paper proposes an end-to-end deep learning framework to accurately predict multi-step power system state estimations in real-time. In our model, we employ a sequence-to-sequence framework to allow for multi-step forecasting. Bidirectional gated recurrent units (BiGRUs) are incorporated into the model to achieve high prediction accuracy. The dominant performance of our model is validated using real dataset. Experimental results show the superiority of our model in predictive power compared to existing alternatives.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.