Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Know your Enemy: Investigating Monte-Carlo Tree Search with Opponent Models in Pommerman (2305.13206v1)

Published 22 May 2023 in cs.AI

Abstract: In combination with Reinforcement Learning, Monte-Carlo Tree Search has shown to outperform human grandmasters in games such as Chess, Shogi and Go with little to no prior domain knowledge. However, most classical use cases only feature up to two players. Scaling the search to an arbitrary number of players presents a computational challenge, especially if decisions have to be planned over a longer time horizon. In this work, we investigate techniques that transform general-sum multiplayer games into single-player and two-player games that consider other agents to act according to given opponent models. For our evaluation, we focus on the challenging Pommerman environment which involves partial observability, a long time horizon and sparse rewards. In combination with our search methods, we investigate the phenomena of opponent modeling using heuristics and self-play. Overall, we demonstrate the effectiveness of our multiplayer search variants both in a supervised learning and reinforcement learning setting.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.