Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Partial Annotation Learning for Biomedical Entity Recognition (2305.13120v1)

Published 22 May 2023 in cs.CL and cs.LG

Abstract: Motivation: Named Entity Recognition (NER) is a key task to support biomedical research. In Biomedical Named Entity Recognition (BioNER), obtaining high-quality expert annotated data is laborious and expensive, leading to the development of automatic approaches such as distant supervision. However, manually and automatically generated data often suffer from the unlabeled entity problem, whereby many entity annotations are missing, degrading the performance of full annotation NER models. Results: To address this problem, we systematically study the effectiveness of partial annotation learning methods for biomedical entity recognition over different simulated scenarios of missing entity annotations. Furthermore, we propose a TS-PubMedBERT-Partial-CRF partial annotation learning model. We harmonize 15 biomedical NER corpora encompassing five entity types to serve as a gold standard and compare against two commonly used partial annotation learning models, BiLSTM-Partial-CRF and EER-PubMedBERT, and the state-of-the-art full annotation learning BioNER model PubMedBERT tagger. Results show that partial annotation learning-based methods can effectively learn from biomedical corpora with missing entity annotations. Our proposed model outperforms alternatives and, specifically, the PubMedBERT tagger by 38% in F1-score under high missing entity rates. The recall of entity mentions in our model is also competitive with the upper bound on the fully annotated dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.