Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Antithetic multilevel Monte Carlo method for approximations of SDEs with non-globally Lipschitz continuous coefficients (2305.12992v2)

Published 22 May 2023 in math.NA, cs.NA, and math.PR

Abstract: In the field of computational finance, one is commonly interested in the expected value of a financial derivative whose payoff depends on the solution of stochastic differential equations (SDEs). For multi-dimensional SDEs with non-commutative diffusion coefficients in the globally Lipschitz setting, a kind of one-half order truncated Milstein-type scheme without L\'evy areas was recently introduced by Giles and Szpruch (2014), which combined with the antithetic multilevel Monte Carlo (MLMC) gives the optimal overall computational cost $\mathcal{O}(\epsilon{-2})$ for the required target accuracy $\epsilon$. Nevertheless, many nonlinear SDEs in applications have non-globally Lipschitz continuous coefficients and the corresponding theoretical guarantees for antithetic MLMC are absent in the literature. In the present work, we aim to fill the gap and analyze antithetic MLMC in a non-globally Lipschitz setting. First, we propose a family of modified Milstein-type schemes without L\'evy areas to approximate SDEs with non-globally Lipschitz continuous coefficients. The expected one-half order of strong convergence is recovered in a non-globally Lipschitz setting, where even the diffusion coefficients are allowed to grow superlinearly. This then helps us to analyze the relevant variance of the multilevel estimator and the optimal computational cost is finally achieved for the antithetic MLMC. Since getting rid of the L\'evy areas destroys the martingale properties of the scheme, the analysis of both the convergence rate and the desired variance becomes highly non-trivial in the non-globally Lipschitz setting. By introducing an auxiliary approximation process, we develop non-standard arguments to overcome the essential difficulties. Numerical experiments are provided to confirm the theoretical findings.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.