Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

UVOSAM: A Mask-free Paradigm for Unsupervised Video Object Segmentation via Segment Anything Model (2305.12659v2)

Published 22 May 2023 in cs.CV

Abstract: The current state-of-the-art methods for unsupervised video object segmentation (UVOS) require extensive training on video datasets with mask annotations, limiting their effectiveness in handling challenging scenarios. However, the Segment Anything Model (SAM) introduces a new prompt-driven paradigm for image segmentation, offering new possibilities. In this study, we investigate SAM's potential for UVOS through different prompt strategies. We then propose UVOSAM, a mask-free paradigm for UVOS that utilizes the STD-Net tracker. STD-Net incorporates a spatial-temporal decoupled deformable attention mechanism to establish an effective correlation between intra- and inter-frame features, remarkably enhancing the quality of box prompts in complex video scenes. Extensive experiments on the DAVIS2017-unsupervised and YoutubeVIS19&21 datasets demonstrate the superior performance of UVOSAM without mask supervision compared to existing mask-supervised methods, as well as its ability to generalize to weakly-annotated video datasets. Code can be found at https://github.com/alibaba/UVOSAM.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.