Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Keeping Up with the Language Models: Systematic Benchmark Extension for Bias Auditing (2305.12620v2)

Published 22 May 2023 in cs.CL

Abstract: Bias auditing of LMs has received considerable attention as LMs are becoming widespread. As such, several benchmarks for bias auditing have been proposed. At the same time, the rapid evolution of LMs can make these benchmarks irrelevant in no time. Bias auditing is further complicated by LM brittleness: when a presumably biased outcome is observed, is it due to model bias or model brittleness? We propose enlisting the models themselves to help construct bias auditing datasets that remain challenging, and introduce bias measures that distinguish between different types of model errors. First, we extend an existing bias benchmark for NLI (BBNLI) using a combination of LM-generated lexical variations, adversarial filtering, and human validation. We demonstrate that the newly created dataset BBNLI-next is more challenging than BBNLI: on average, BBNLI-next reduces the accuracy of state-of-the-art NLI models from 95.3%, as observed by BBNLI, to a strikingly low 57.5%. Second, we employ BBNLI-next to showcase the interplay between robustness and bias: we point out shortcomings in current bias scores and propose bias measures that take into account both bias and model brittleness. Third, despite the fact that BBNLI-next was designed with non-generative models in mind, we show that the new dataset is also able to uncover bias in state-of-the-art open-source generative LMs. Note: All datasets included in this work are in English and they address US-centered social biases. In the spirit of efficient NLP research, no model training or fine-tuning was performed to conduct this research. Warning: This paper contains offensive text examples.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.