Markov $α$-Potential Games (2305.12553v7)
Abstract: We propose a new framework of Markov $\alpha$-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov $\alpha$-potential game, and establish the existence of an associated $\alpha$-potential function. Any optimizer of an $\alpha$-potential function is shown to be an $\alpha$-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov $\alpha$-potential games, with explicit characterization of an upper bound for $\alpha$ and its relation to game parameters. Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for $\alpha$ for any Markov game. Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis, and corroborate the results with numerical experiments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.