Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

VAKTA-SETU: A Speech-to-Speech Machine Translation Service in Select Indic Languages (2305.12518v1)

Published 21 May 2023 in cs.CL

Abstract: In this work, we present our deployment-ready Speech-to-Speech Machine Translation (SSMT) system for English-Hindi, English-Marathi, and Hindi-Marathi language pairs. We develop the SSMT system by cascading Automatic Speech Recognition (ASR), Disfluency Correction (DC), Machine Translation (MT), and Text-to-Speech Synthesis (TTS) models. We discuss the challenges faced during the research and development stage and the scalable deployment of the SSMT system as a publicly accessible web service. On the MT part of the pipeline too, we create a Text-to-Text Machine Translation (TTMT) service in all six translation directions involving English, Hindi, and Marathi. To mitigate data scarcity, we develop a LaBSE-based corpus filtering tool to select high-quality parallel sentences from a noisy pseudo-parallel corpus for training the TTMT system. All the data used for training the SSMT and TTMT systems and the best models are being made publicly available. Users of our system are (a) Govt. of India in the context of its new education policy (NEP), (b) tourists who criss-cross the multilingual landscape of India, (c) Indian Judiciary where a leading cause of the pendency of cases (to the order of 10 million as on date) is the translation of case papers, (d) farmers who need weather and price information and so on. We also share the feedback received from various stakeholders when our SSMT and TTMT systems were demonstrated in large public events.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.