Papers
Topics
Authors
Recent
2000 character limit reached

Understanding Multi-phase Optimization Dynamics and Rich Nonlinear Behaviors of ReLU Networks (2305.12467v5)

Published 21 May 2023 in cs.LG and math.OC

Abstract: The training process of ReLU neural networks often exhibits complicated nonlinear phenomena. The nonlinearity of models and non-convexity of loss pose significant challenges for theoretical analysis. Therefore, most previous theoretical works on the optimization dynamics of neural networks focus either on local analysis (like the end of training) or approximate linear models (like Neural Tangent Kernel). In this work, we conduct a complete theoretical characterization of the training process of a two-layer ReLU network trained by Gradient Flow on a linearly separable data. In this specific setting, our analysis captures the whole optimization process starting from random initialization to final convergence. Despite the relatively simple model and data that we studied, we reveal four different phases from the whole training process showing a general simplifying-to-complicating learning trend. Specific nonlinear behaviors can also be precisely identified and captured theoretically, such as initial condensation, saddle-to-plateau dynamics, plateau escape, changes of activation patterns, learning with increasing complexity, etc.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.