Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Study of GANs for Noisy Speech Simulation from Clean Speech (2305.12460v1)

Published 21 May 2023 in cs.SD and eess.AS

Abstract: The performance of speech processing models trained on clean speech drops significantly in noisy conditions. Training with noisy datasets alleviates the problem, but procuring such datasets is not always feasible. Noisy speech simulation models that generate noisy speech from clean speech help remedy this issue. In our work, we study the ability of Generative Adversarial Networks (GANs) to simulate a variety of noises. Noise from the Ultra-High-Frequency/Very-High-Frequency (UHF/VHF), additive stationary and non-stationary, and codec distortion categories are studied. We propose four GANs, including the non-parallel translators, SpeechAttentionGAN, SimuGAN, and MaskCycleGAN-Augment, and the parallel translator, Speech2Speech-Augment. We achieved improvements of 55.8%, 28.9%, and 22.8% in terms of Multi-Scale Spectral Loss (MSSL) as compared to the baseline for the RATS, TIMIT-Cabin, and TIMIT-Helicopter datasets, respectively, after training on small datasets of about 3 minutes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube