Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 72 tok/s
Gemini 3.0 Pro 51 tok/s Pro
Gemini 2.5 Flash 147 tok/s Pro
Kimi K2 185 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the Impossibility of General Parallel Fast-forwarding of Hamiltonian Simulation (2305.12444v1)

Published 21 May 2023 in quant-ph and cs.CC

Abstract: Hamiltonian simulation is one of the most important problems in the field of quantum computing. There have been extended efforts on designing algorithms for faster simulation, and the evolution time $T$ for the simulation turns out to largely affect algorithm runtime. While there are some specific types of Hamiltonians that can be fast-forwarded, i.e., simulated within time $o(T)$, for large enough classes of Hamiltonians (e.g., all local/sparse Hamiltonians), existing simulation algorithms require running time at least linear in the evolution time $T$. On the other hand, while there exist lower bounds of $\Omega(T)$ circuit size for some large classes of Hamiltonian, these lower bounds do not rule out the possibilities of Hamiltonian simulation with large but "low-depth" circuits by running things in parallel. Therefore, it is intriguing whether we can achieve fast Hamiltonian simulation with the power of parallelism. In this work, we give a negative result for the above open problem, showing that sparse Hamiltonians and (geometrically) local Hamiltonians cannot be parallelly fast-forwarded. In the oracle model, we prove that there are time-independent sparse Hamiltonians that cannot be simulated via an oracle circuit of depth $o(T)$. In the plain model, relying on the random oracle heuristic, we show that there exist time-independent local Hamiltonians and time-dependent geometrically local Hamiltonians that cannot be simulated via an oracle circuit of depth $o(T/nc)$, where the Hamiltonians act on $n$-qubits, and $c$ is a constant.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.