Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

DiffUCD:Unsupervised Hyperspectral Image Change Detection with Semantic Correlation Diffusion Model (2305.12410v1)

Published 21 May 2023 in cs.CV

Abstract: Hyperspectral image change detection (HSI-CD) has emerged as a crucial research area in remote sensing due to its ability to detect subtle changes on the earth's surface. Recently, diffusional denoising probabilistic models (DDPM) have demonstrated remarkable performance in the generative domain. Apart from their image generation capability, the denoising process in diffusion models can comprehensively account for the semantic correlation of spectral-spatial features in HSI, resulting in the retrieval of semantically relevant features in the original image. In this work, we extend the diffusion model's application to the HSI-CD field and propose a novel unsupervised HSI-CD with semantic correlation diffusion model (DiffUCD). Specifically, the semantic correlation diffusion model (SCDM) leverages abundant unlabeled samples and fully accounts for the semantic correlation of spectral-spatial features, which mitigates pseudo change between multi-temporal images arising from inconsistent imaging conditions. Besides, objects with the same semantic concept at the same spatial location may exhibit inconsistent spectral signatures at different times, resulting in pseudo change. To address this problem, we propose a cross-temporal contrastive learning (CTCL) mechanism that aligns the spectral feature representations of unchanged samples. By doing so, the spectral difference invariant features caused by environmental changes can be obtained. Experiments conducted on three publicly available datasets demonstrate that the proposed method outperforms the other state-of-the-art unsupervised methods in terms of Overall Accuracy (OA), Kappa Coefficient (KC), and F1 scores, achieving improvements of approximately 3.95%, 8.13%, and 4.45%, respectively. Notably, our method can achieve comparable results to those fully supervised methods requiring numerous annotated samples.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.