Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep Radar Inverse Sensor Models for Dynamic Occupancy Grid Maps (2305.12409v3)

Published 21 May 2023 in cs.CV, cs.AI, and cs.RO

Abstract: To implement autonomous driving, one essential step is to model the vehicle environment based on the sensor inputs. Radars, with their well-known advantages, became a popular option to infer the occupancy state of grid cells surrounding the vehicle. To tackle data sparsity and noise of radar detections, we propose a deep learning-based Inverse Sensor Model (ISM) to learn the mapping from sparse radar detections to polar measurement grids. Improved lidar-based measurement grids are used as reference. The learned radar measurement grids, combined with radar Doppler velocity measurements, are further used to generate a Dynamic Grid Map (DGM). Experiments in real-world highway scenarios show that our approach outperforms the hand-crafted geometric ISMs. In comparison to state-of-the-art deep learning methods, our approach is the first one to learn a single-frame measurement grid in the polar scheme from radars with a limited Field Of View (FOV). The learning framework makes the learned ISM independent of the radar mounting. This enables us to flexibly use one or more radar sensors without network retraining and without requirements on 360{\deg} sensor coverage.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube