Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Identifiablility of Nonlocal Interaction Kernels in First-Order Systems of Interacting Particles on Riemannian Manifolds (2305.12340v2)

Published 21 May 2023 in math.NA, cs.NA, math.CA, math.ST, and stat.TH

Abstract: In this paper, we tackle a critical issue in nonparametric inference for systems of interacting particles on Riemannian manifolds: the identifiability of the interaction functions. Specifically, we define the function spaces on which the interaction kernels can be identified given infinite i.i.d observational derivative data sampled from a distribution. Our methodology involves casting the learning problem as a linear statistical inverse problem using a operator theoretical framework. We prove the well-posedness of inverse problem by establishing the strict positivity of a related integral operator and our analysis allows us to refine the results on specific manifolds such as the sphere and Hyperbolic space. Our findings indicate that a numerically stable procedure exists to recover the interaction kernel from finite (noisy) data, and the estimator will be convergent to the ground truth. This also answers an open question in [MMQZ21] and demonstrate that least square estimators can be statistically optimal in certain scenarios. Finally, our theoretical analysis could be extended to the mean-field case, revealing that the corresponding nonparametric inverse problem is ill-posed in general and necessitates effective regularization techniques.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube