Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Temporal Fusion Transformers for Streamflow Prediction: Value of Combining Attention with Recurrence (2305.12335v1)

Published 21 May 2023 in cs.LG and physics.geo-ph

Abstract: Over the past few decades, the hydrology community has witnessed notable advancements in streamflow prediction, particularly with the introduction of cutting-edge machine-learning algorithms. Recurrent neural networks, especially Long Short-Term Memory (LSTM) networks, have become popular due to their capacity to create precise forecasts and realistically mimic the system dynamics. Attention-based models, such as Transformers, can learn from the entire data sequence concurrently, a feature that LSTM does not have. This work tests the hypothesis that combining recurrence with attention can improve streamflow prediction. We set up the Temporal Fusion Transformer (TFT) architecture, a model that combines both of these aspects and has never been applied in hydrology before. We compare the performance of LSTM, Transformers, and TFT over 2,610 globally distributed catchments from the recently available Caravan dataset. Our results demonstrate that TFT indeed exceeds the performance benchmark set by the LSTM and Transformers for streamflow prediction. Additionally, being an explainable AI method, TFT helps in gaining insights into the streamflow generation processes.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.