Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Random Walk Sampling in Social Networks Involving Private Nodes (2305.12314v1)

Published 21 May 2023 in cs.SI

Abstract: Analysis of social networks with limited data access is challenging for third parties. To address this challenge, a number of studies have developed algorithms that estimate properties of social networks via a simple random walk. However, most existing algorithms do not assume private nodes that do not publish their neighbors' data when they are queried in empirical social networks. Here we propose a practical framework for estimating properties via random walk-based sampling in social networks involving private nodes. First, we develop a sampling algorithm by extending a simple random walk to the case of social networks involving private nodes. Then, we propose estimators with reduced biases induced by private nodes for the network size, average degree, and density of the node label. Our results show that the proposed estimators reduce biases induced by private nodes in the existing estimators by up to 92.6% on social network datasets involving private nodes.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.