Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Disjunctive Branch-And-Bound for Certifiably Optimal Low-Rank Matrix Completion (2305.12292v3)

Published 20 May 2023 in cs.LG, math.OC, and stat.ML

Abstract: Low-rank matrix completion consists of computing a matrix of minimal complexity that recovers a given set of observations as accurately as possible. Unfortunately, existing methods for matrix completion are heuristics that, while highly scalable and often identifying high-quality solutions, do not possess any optimality guarantees. We reexamine matrix completion with an optimality-oriented eye. We reformulate low-rank matrix completion problems as convex problems over the non-convex set of projection matrices and implement a disjunctive branch-and-bound scheme that solves them to certifiable optimality. Further, we derive a novel and often near-exact class of convex relaxations by decomposing a low-rank matrix as a sum of rank-one matrices and incentivizing that two-by-two minors in each rank-one matrix have determinant zero. In numerical experiments, our new convex relaxations decrease the optimality gap by two orders of magnitude compared to existing attempts, and our disjunctive branch-and-bound scheme solves $n \times m$ rank-$r$ matrix completion problems to certifiable optimality or near optimality in hours for $\max {m, n} \leq 2500$ and $r \leq 5$. Moreover, this improvement in the training error translates into an average $2\%$--$50\%$ improvement in the test set error.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: