Papers
Topics
Authors
Recent
Search
2000 character limit reached

Diffusion Co-Policy for Synergistic Human-Robot Collaborative Tasks

Published 20 May 2023 in cs.RO | (2305.12171v4)

Abstract: Modeling multimodal human behavior has been a key barrier to increasing the level of interaction between human and robot, particularly for collaborative tasks. Our key insight is that an effective, learned robot policy used for human-robot collaborative tasks must be able to express a high degree of multimodality, predict actions in a temporally consistent manner, and recognize a wide range of frequencies of human actions in order to seamlessly integrate with a human in the control loop. We present Diffusion Co-policy, a method for planning sequences of actions that synergize well with humans during test time. The co-policy predicts joint human-robot action sequences via a Transformer-based diffusion model, which is trained on a dataset of collaborative human-human demonstrations, and directly executes the robot actions in a receding horizon control framework. We demonstrate in both simulation and real environments that the method outperforms other state-of-art learning methods on the task of human-robot table-carrying with a human in the loop. Moreover, we qualitatively highlight compelling robot behaviors that demonstrate evidence of true human-robot collaboration, including mutual adaptation, shared task understanding, leadership switching, and low levels of wasteful interaction forces arising from dissent.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.