Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GFDC: A Granule Fusion Density-Based Clustering with Evidential Reasoning (2305.12114v1)

Published 20 May 2023 in cs.LG, cs.AI, cs.DC, cs.IT, and math.IT

Abstract: Currently, density-based clustering algorithms are widely applied because they can detect clusters with arbitrary shapes. However, they perform poorly in measuring global density, determining reasonable cluster centers or structures, assigning samples accurately and handling data with large density differences among clusters. To overcome their drawbacks, this paper proposes a granule fusion density-based clustering with evidential reasoning (GFDC). Both local and global densities of samples are measured by a sparse degree metric first. Then information granules are generated in high-density and low-density regions, assisting in processing clusters with significant density differences. Further, three novel granule fusion strategies are utilized to combine granules into stable cluster structures, helping to detect clusters with arbitrary shapes. Finally, by an assignment method developed from Dempster-Shafer theory, unstable samples are assigned. After using GFDC, a reasonable clustering result and some identified outliers can be obtained. The experimental results on extensive datasets demonstrate the effectiveness of GFDC.

Citations (3)

Summary

We haven't generated a summary for this paper yet.