Accelerated DC Algorithms for the Asymmetric Eigenvalue Complementarity Problem (2305.12076v1)
Abstract: We are interested in solving the Asymmetric Eigenvalue Complementarity Problem (AEiCP) by accelerated Difference-of-Convex (DC) algorithms. Two novel hybrid accelerated DCA: the Hybrid DCA with Line search and Inertial force (HDCA-LI) and the Hybrid DCA with Nesterov's extrapolation and Inertial force (HDCA-NI), are established. We proposed three DC programming formulations of AEiCP based on Difference-of-Convex-Sums-of-Squares (DC-SOS) decomposition techniques, and applied the classical DCA and 6 accelerated variants (BDCA with exact and inexact line search, ADCA, InDCA, HDCA-LI and HDCA-NI) to the three DC formulations. Numerical simulations of 7 DCA-type methods against state-of-the-art optimization solvers IPOPT, KNITRO and FILTERSD, are reported.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.