Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DADIN: Domain Adversarial Deep Interest Network for Cross Domain Recommender Systems (2305.12058v1)

Published 20 May 2023 in cs.IR, cs.AI, and cs.LG

Abstract: Click-Through Rate (CTR) prediction is one of the main tasks of the recommendation system, which is conducted by a user for different items to give the recommendation results. Cross-domain CTR prediction models have been proposed to overcome problems of data sparsity, long tail distribution of user-item interactions, and cold start of items or users. In order to make knowledge transfer from source domain to target domain more smoothly, an innovative deep learning cross-domain CTR prediction model, Domain Adversarial Deep Interest Network (DADIN) is proposed to convert the cross-domain recommendation task into a domain adaptation problem. The joint distribution alignment of two domains is innovatively realized by introducing domain agnostic layers and specially designed loss, and optimized together with CTR prediction loss in a way of adversarial training. It is found that the Area Under Curve (AUC) of DADIN is 0.08% higher than the most competitive baseline on Huawei dataset and is 0.71% higher than its competitors on Amazon dataset, achieving the state-of-the-art results on the basis of the evaluation of this model performance on two real datasets. The ablation study shows that by introducing adversarial method, this model has respectively led to the AUC improvements of 2.34% on Huawei dataset and 16.67% on Amazon dataset.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube