Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Foray into Parallel Optimisation Algorithms for High Dimension Low Sample Space Generalized Distance Weighted Discrimination problems (2305.12019v1)

Published 19 May 2023 in math.OC and cs.DC

Abstract: In many modern data sets, High dimension low sample size (HDLSS) data is prevalent in many fields of studies. There has been an increased focus recently on using machine learning and statistical methods to mine valuable information out of these data sets. Thus, there has been an increased interest in efficient learning in high dimensions. Naturally, as the dimension of the input data increases, the learning task will become more difficult, due to increasing computational and statistical complexities. This makes it crucial to overcome the curse of dimensionality in a given dataset, within a reasonable time frame, in a bid to obtain the insights required to keep a competitive edge. To solve HDLSS problems, classical methods such as support vector machines can be utilised to alleviate data piling at the margin. However, when we question geometric domains and their assumptions on input data, we are naturally lead to convex optimisation problems and this gives rise to the development of solutions like distance weighted discrimination (DWD), which can be modelled as a second-order cone programming problem and solved by interior-point methods when sample size and feature dimensions of the data is moderate. In this paper, our focus is on designing an even more scalable and robust algorithm for solving large-scale generalized DWD problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.