Papers
Topics
Authors
Recent
2000 character limit reached

Computing high-dimensional optimal transport by flow neural networks (2305.11857v5)

Published 19 May 2023 in stat.ML, cs.LG, and stat.ME

Abstract: Computing optimal transport (OT) for general high-dimensional data has been a long-standing challenge. Despite much progress, most of the efforts including neural network methods have been focused on the static formulation of the OT problem. The current work proposes to compute the dynamic OT between two arbitrary distributions $P$ and $Q$ by optimizing a flow model, where both distributions are only accessible via finite samples. Our method learns the dynamic OT by finding an invertible flow that minimizes the transport cost. The trained optimal transport flow subsequently allows for performing many downstream tasks, including infinitesimal density ratio estimation (DRE) and domain adaptation by interpolating distributions in the latent space. The effectiveness of the proposed model on high-dimensional data is demonstrated by strong empirical performance on OT baselines, image-to-image translation, and high-dimensional DRE.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.