Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis

Published 19 May 2023 in stat.ML and cs.LG | (2305.11832v1)

Abstract: We propose a new multimodal variational autoencoder that enables to generate from the joint distribution and conditionally to any number of complex modalities. The unimodal posteriors are conditioned on the Deep Canonical Correlation Analysis embeddings which preserve the shared information across modalities leading to more coherent cross-modal generations. Furthermore, we use Normalizing Flows to enrich the unimodal posteriors and achieve more diverse data generation. Finally, we propose to use a Product of Experts for inferring one modality from several others which makes the model scalable to any number of modalities. We demonstrate that our method improves likelihood estimates, diversity of the generations and in particular coherence metrics in the conditional generations on several datasets.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.