Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Summarizing Strategy Card Game AI Competition (2305.11814v2)

Published 19 May 2023 in cs.AI

Abstract: This paper concludes five years of AI competitions based on Legends of Code and Magic (LOCM), a small Collectible Card Game (CCG), designed with the goal of supporting research and algorithm development. The game was used in a number of events, including Community Contests on the CodinGame platform, and Strategy Card Game AI Competition at the IEEE Congress on Evolutionary Computation and IEEE Conference on Games. LOCM has been used in a number of publications related to areas such as game tree search algorithms, neural networks, evaluation functions, and CCG deckbuilding. We present the rules of the game, the history of organized competitions, and a listing of the participant and their approaches, as well as some general advice on organizing AI competitions for the research community. Although the COG 2022 edition was announced to be the last one, the game remains available and can be played using an online leaderboard arena.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. OpenAI, “OpenAI Five,” https://blog.openai.com/openai-five/, 2017.
  2. O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M. Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D. Horgan, M. Kroiss, I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezhnevets, J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff, T. Pohlen, D. Yogatama, J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, C. Apps, K. Kavukcuoglu, D. Hassabis, and D. Silver, “AlphaStar: Mastering the Real-Time Strategy Game StarCraft II,” 2019.
  3. A. K. Hoover, J. Togelius, S. Lee, and F. de Mesentier Silva, “The Many AI Challenges of Hearthstone,” KI-Künstliche Intelligenz, vol. 34, pp. 33–43, 2020.
  4. A. Dockhorn and S. Mostaghim, “Introducing the Hearthstone-AI Competition,” arXiv preprint arXiv:1906.04238, 2019.
  5. A. Janusz, T. Tajmajer, and M. Świechowski, “Helping AI to Play Hearthstone: AAIA’17 Data Mining Challenge,” in FedCSIS, 2017, pp. 121–125.
  6. J. Kowalski and R. Miernik, “Legends of Code and Magic,” http://legendsofcodeandmagic.com, 2018.
  7. S. Ontañón, “The Combinatorial Multi-armed Bandit Problem and Its Application to Real-time Strategy Games,” in AIIDE, 2013, pp. 58–64.
  8. D. Churchill, M. Preuss, F. Richoux, G. Synnaeve, A. Uriarte, S. Ontañnón, and M. Čertickỳ, “Starcraft bots and competitions,” Encyclopedia of Computer Graphics and Games, pp. 1–18, 2016.
  9. J. Liu, D. Pérez, and S. Lucas, “Rolling Horizon Coevolutionary planning for two-player video games,” in CEEC, 2016, pp. 174–179.
  10. C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A Survey of Monte Carlo Tree Search Methods,” TCIAIG, vol. 4, no. 1, pp. 1–43, 2012.
  11. J. S. B. Choe and J.-K. Kim, “Enhancing Monte Carlo Tree Search for Playing Hearthstone,” in COG, 2019, pp. 1–7.
  12. P. García-Sánchez, A. Tonda, A. J. Fernández-Leiva, and C. Cotta, “Optimizing hearthstone agents using an evolutionary algorithm,” Knowledge-Based Systems, vol. 188, p. 105032, 2020.
  13. A. Janusz, D. Slezak, S. Stawicki, and M. Rosiak, “Knowledge Pit-A Data Challenge Platform.” in CS&P, 2015, pp. 191–195.
  14. Ł. Grad, “Helping AI to play Hearthstone using neural networks,” in FedCSIS, 2017, pp. 131–134.
  15. Q. H. Vu, D. Ruta, and L. Cen, “An ensemble model with hierarchical decomposition and aggregation for highly scalable and robust classification,” in FedCSIS, 2017, pp. 149–152.
  16. S. Zhang and M. Buro, “Improving Hearthstone AI by learning high-level rollout policies and bucketing chance node events,” in CIG, 2017, pp. 309–316.
  17. A. Santos, P. A. Santos, and F. S. Melo, “Monte Carlo tree search experiments in Hearthstone,” in IEEE CIG.   IEEE, 2017, pp. 272–279.
  18. M. Świechowski, T. Tajmajer, and A. Janusz, “Improving Hearthstone AI by Combining MCTS and Supervised Learning Algorithms,” in IEEE CIG.   IEEE, 2018, pp. 1–8.
  19. C. Xiao, Y. Zhang, X. Huang, Q. Huang, J. Chen, and P. Sun, “Mastering Strategy Card Game (Hearthstone) with Improved Techniques,” ArXiv, vol. abs/2303.05197, 2023.
  20. P. García-Sánchez, A. Tonda, G. Squillero, A. Mora, and J. J. Merelo, “Evolutionary deckbuilding in Hearthstone,” in CIG, 2016, pp. 1–8.
  21. A. Bhatt, S. Lee, F. de Mesentier Silva, C. W. Watson, J. Togelius, and A. K. Hoover, “Exploring the Hearthstone deck space,” in FDG, 2018, pp. 1–10.
  22. M. C. Fontaine, S. Lee, L. B. Soros, F. De Mesentier Silva, J. Togelius, and A. K. Hoover, “Mapping Hearthstone Deck Spaces Through MAP-elites with Sliding Boundaries,” in GECCO, 2019, pp. 161–169.
  23. Y. Zhang, M. C. Fontaine, A. K. Hoover, and S. Nikolaidis, “Deep surrogate assisted map-elites for automated hearthstone deckbuilding,” in GECCO, 2022, pp. 158–167.
  24. F. de Mesentier Silva, R. Canaan, S. Lee, M. C. Fontaine, J. Togelius, and A. K. Hoover, “Evolving the Hearthstone meta,” in COG, 2019, pp. 1–8.
  25. J. Kowalski and R. Miernik, “Evolutionary Approach to Collectible Card Game Arena Deckbuilding using Active Genes,” in CEC, 2020, pp. 1–8.
  26. R. Miernik and J. Kowalski, “Evolving Evaluation Functions for Collectible Card Game AI,” in ICAART.   INSTICC, 2022, pp. 253–260.
  27. R. Vieira, A. Tavares, and L. Chaimowicz, “Drafting in Collectible Card Games via Reinforcement Learning,” in SBGames, 2020, pp. 54–61.
  28. ——, “Exploring reinforcement learning approaches for drafting in collectible card games,” Entertainment Computing, vol. 44, 2023.
  29. M. Witkowski, Ł. Klasiński, and W. Meller, “Implementation of collectible card Game AI with opponent prediction,” Engineer’s Thesis, University of Wrocław, 2020.
  30. R. Montoliu, R. D. Gaina, D. Perez, D. Delgado, and S. Lucas, “Efficient heuristic policy optimisation for a challenging strategic card game,” in EvoSTAR, 2020, pp. 403–418.
  31. N. Justesen, T. Mahlmann, and J. Togelius, “Online evolution for multi-action adversarial games,” in EvoCOP, 2016, pp. 590–603.
  32. W. Xi, Y. Zhang, C. Xiao, X. Huang, S. Deng, H. Liang, J. Chen, and P. Sun, “Mastering Strategy Card Game (Legends of Code and Magic) via End-to-End Policy and Optimistic Smooth Fictitious Play,” ArXiv, vol. abs/2303.04096, 2023.
  33. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All you Need,” in NeurIPS, vol. 30.   Curran Associates, Inc., 2017.
  34. J. Togelius, “How to Run a Successful Game-Based AI Competition,” TCIAIG, vol. 8, no. 1, pp. 95–100, 2016.
  35. J. Kowalski, R. Miernik, K. Polak, D. Budzki, and K. D., “Introducing Tales of Tribute AI Competition,” 2023, arXiv preprint arXiv:2305.08234.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com