ReFIT: Relevance Feedback from a Reranker during Inference (2305.11744v2)
Abstract: Retrieve-and-rerank is a prevalent framework in neural information retrieval, wherein a bi-encoder network initially retrieves a pre-defined number of candidates (e.g., K=100), which are then reranked by a more powerful cross-encoder model. While the reranker often yields improved candidate scores compared to the retriever, its scope is confined to only the top K retrieved candidates. As a result, the reranker cannot improve retrieval performance in terms of Recall@K. In this work, we propose to leverage the reranker to improve recall by making it provide relevance feedback to the retriever at inference time. Specifically, given a test instance during inference, we distill the reranker's predictions for that instance into the retriever's query representation using a lightweight update mechanism. The aim of the distillation loss is to align the retriever's candidate scores more closely with those produced by the reranker. The algorithm then proceeds by executing a second retrieval step using the updated query vector. We empirically demonstrate that this method, applicable to various retrieve-and-rerank frameworks, substantially enhances retrieval recall across multiple domains, languages, and modalities.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.