Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

IKDSumm: Incorporating Key-phrases into BERT for extractive Disaster Tweet Summarization (2305.11592v1)

Published 19 May 2023 in cs.CL and cs.SI

Abstract: Online social media platforms, such as Twitter, are one of the most valuable sources of information during disaster events. Therefore, humanitarian organizations, government agencies, and volunteers rely on a summary of this information, i.e., tweets, for effective disaster management. Although there are several existing supervised and unsupervised approaches for automated tweet summary approaches, these approaches either require extensive labeled information or do not incorporate specific domain knowledge of disasters. Additionally, the most recent approaches to disaster summarization have proposed BERT-based models to enhance the summary quality. However, for further improved performance, we introduce the utilization of domain-specific knowledge without any human efforts to understand the importance (salience) of a tweet which further aids in summary creation and improves summary quality. In this paper, we propose a disaster-specific tweet summarization framework, IKDSumm, which initially identifies the crucial and important information from each tweet related to a disaster through key-phrases of that tweet. We identify these key-phrases by utilizing the domain knowledge (using existing ontology) of disasters without any human intervention. Further, we utilize these key-phrases to automatically generate a summary of the tweets. Therefore, given tweets related to a disaster, IKDSumm ensures fulfillment of the summarization key objectives, such as information coverage, relevance, and diversity in summary without any human intervention. We evaluate the performance of IKDSumm with 8 state-of-the-art techniques on 12 disaster datasets. The evaluation results show that IKDSumm outperforms existing techniques by approximately 2-79% in terms of ROUGE-N F1-score.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube