Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PDE-constrained Gaussian process surrogate modeling with uncertain data locations (2305.11586v3)

Published 19 May 2023 in cs.LG, cs.CE, and stat.ML

Abstract: Gaussian process regression is widely applied in computational science and engineering for surrogate modeling owning to its kernel-based and probabilistic nature. In this work, we propose a Bayesian approach that integrates the variability of input data into the Gaussian process regression for function and partial differential equation approximation. Leveraging two types of observables -- noise-corrupted outputs with certain inputs and those with prior-distribution-defined uncertain inputs, a posterior distribution of uncertain inputs is estimated via Bayesian inference. Thereafter, such quantified uncertainties of inputs are incorporated into Gaussian process predictions by means of marginalization. The setting of two types of data aligned with common scenarios of constructing surrogate models for the solutions of partial differential equations, where the data of boundary conditions and initial conditions are typically known while the data of solution may involve uncertainties due to the measurement or stochasticity. The effectiveness of the proposed method is demonstrated through several numerical examples including multiple one-dimensional functions, the heat equation and Allen-Cahn equation. A consistently good performance of generalization is observed, and a substantial reduction in the predictive uncertainties is achieved by the Bayesian inference of uncertain inputs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube