Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Barzilai-Borwein Method for Distributed Optimization over Unbalanced Directed Networks (2305.11469v4)

Published 19 May 2023 in math.OC, cs.SY, and eess.SY

Abstract: This paper studies optimization problems over multi-agent systems, in which all agents cooperatively minimize a global objective function expressed as a sum of local cost functions. Each agent in the systems uses only local computation and communication in the overall process without leaking their private information. Based on the Barzilai-Borwein (BB) method and multi-consensus inner loops, a distributed algorithm with the availability of larger stepsizes and accelerated convergence, namely ADBB, is proposed. Moreover, owing to employing only row-stochastic weight matrices, ADBB can resolve the optimization problems over unbalanced directed networks without requiring the knowledge of neighbors' out-degree for each agent. Via establishing contraction relationships between the consensus error, the optimality gap, and the gradient tracking error, ADBB is theoretically proved to converge linearly to the globally optimal solution. A real-world data set is used in simulations to validate the correctness of the theoretical analysis.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.