Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Phonetic and Prosody-aware Self-supervised Learning Approach for Non-native Fluency Scoring (2305.11438v1)

Published 19 May 2023 in cs.CL and eess.AS

Abstract: Speech fluency/disfluency can be evaluated by analyzing a range of phonetic and prosodic features. Deep neural networks are commonly trained to map fluency-related features into the human scores. However, the effectiveness of deep learning-based models is constrained by the limited amount of labeled training samples. To address this, we introduce a self-supervised learning (SSL) approach that takes into account phonetic and prosody awareness for fluency scoring. Specifically, we first pre-train the model using a reconstruction loss function, by masking phones and their durations jointly on a large amount of unlabeled speech and text prompts. We then fine-tune the pre-trained model using human-annotated scoring data. Our experimental results, conducted on datasets such as Speechocean762 and our non-native datasets, show that our proposed method outperforms the baseline systems in terms of Pearson correlation coefficients (PCC). Moreover, we also conduct an ablation study to better understand the contribution of phonetic and prosody factors during the pre-training stage.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.