Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Faster Parallel Exact Density Peaks Clustering (2305.11335v1)

Published 18 May 2023 in cs.DC

Abstract: Clustering multidimensional points is a fundamental data mining task, with applications in many fields, such as astronomy, neuroscience, bioinformatics, and computer vision. The goal of clustering algorithms is to group similar objects together. Density-based clustering is a clustering approach that defines clusters as dense regions of points. It has the advantage of being able to detect clusters of arbitrary shapes, rendering it useful in many applications. In this paper, we propose fast parallel algorithms for Density Peaks Clustering (DPC), a popular version of density-based clustering. Existing exact DPC algorithms suffer from low parallelism both in theory and in practice, which limits their application to large-scale data sets. Our most performant algorithm, which is based on priority search kd-trees, achieves $O(\log n\log\log n)$ span (parallel time complexity) for a data set of $n$ points. Our algorithm is also work-efficient, achieving a work complexity matching the best existing sequential exact DPC algorithm. In addition, we present another DPC algorithm based on a Fenwick tree that makes fewer assumptions for its average-case complexity to hold. We provide optimized implementations of our algorithms and evaluate their performance via extensive experiments. On a 30-core machine with two-way hyperthreading, we find that our best algorithm achieves a 10.8--13169x speedup over the previous best parallel exact DPC algorithm. Compared to the state-of-the-art parallel approximate DPC algorithm, our best algorithm achieves a 1.5--4206x speedup, while being exact.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube