Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Multi-channel Separation and Adaptation (2305.11151v2)

Published 18 May 2023 in cs.SD and eess.AS

Abstract: A key challenge in machine learning is to generalize from training data to an application domain of interest. This work generalizes the recently-proposed mixture invariant training (MixIT) algorithm to perform unsupervised learning in the multi-channel setting. We use MixIT to train a model on far-field microphone array recordings of overlapping reverberant and noisy speech from the AMI Corpus. The models are trained on both supervised and unsupervised training data, and are tested on real AMI recordings containing overlapping speech. To objectively evaluate our models, we also use a synthetic multi-channel AMI test set. Holding network architectures constant, we find that a fine-tuned semi-supervised model yields the largest improvement to SI-SNR and to human listening ratings across synthetic and real datasets, outperforming supervised models trained on well-matched synthetic data. Our results demonstrate that unsupervised learning through MixIT enables model adaptation on both single- and multi-channel real-world speech recordings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 16 likes about this paper.