Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Preference or Intent? Double Disentangled Collaborative Filtering (2305.11084v1)

Published 18 May 2023 in cs.IR and cs.LG

Abstract: People usually have different intents for choosing items, while their preferences under the same intent may also different. In traditional collaborative filtering approaches, both intent and preference factors are usually entangled in the modeling process, which significantly limits the robustness and interpretability of recommendation performances. For example, the low-rating items are always treated as negative feedback while they actually could provide positive information about user intent. To this end, in this paper, we propose a two-fold representation learning approach, namely Double Disentangled Collaborative Filtering (DDCF), for personalized recommendations. The first-level disentanglement is for separating the influence factors of intent and preference, while the second-level disentanglement is performed to build independent sparse preference representations under individual intent with limited computational complexity. Specifically, we employ two variational autoencoder networks, intent recognition network and preference decomposition network, to learn the intent and preference factors, respectively. In this way, the low-rating items will be treated as positive samples for modeling intents while the negative samples for modeling preferences. Finally, extensive experiments on three real-world datasets and four evaluation metrics clearly validate the effectiveness and the interpretability of DDCF.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube