Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning-Based Control for Stomach Coverage Scanning of Wireless Capsule Endoscopy (2305.10955v1)

Published 18 May 2023 in cs.RO

Abstract: Due to its non-invasive and painless characteristics, wireless capsule endoscopy has become the new gold standard for assessing gastrointestinal disorders. Omissions, however, could occur throughout the examination since controlling capsule endoscope can be challenging. In this work, we control the magnetic capsule endoscope for the coverage scanning task in the stomach based on reinforcement learning so that the capsule can comprehensively scan every corner of the stomach. We apply a well-made virtual platform named VR-Caps to simulate the process of stomach coverage scanning with a capsule endoscope model. We utilize and compare two deep reinforcement learning algorithms, the Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) algorithms, to train the permanent magnetic agent, which actuates the capsule endoscope directly via magnetic fields and then optimizes the scanning efficiency of stomach coverage. We analyze the pros and cons of the two algorithms with different hyperparameters and achieve a coverage rate of 98.04% of the stomach area within 150.37 seconds.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.