Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unsupervised Hyperspectral Pansharpening via Low-rank Diffusion Model (2305.10925v2)

Published 18 May 2023 in cs.CV and eess.IV

Abstract: Hyperspectral pansharpening is a process of merging a high-resolution panchromatic (PAN) image and a low-resolution hyperspectral (LRHS) image to create a single high-resolution hyperspectral (HRHS) image. Existing Bayesian-based HS pansharpening methods require designing handcraft image prior to characterize the image features, and deep learning-based HS pansharpening methods usually require a large number of paired training data and suffer from poor generalization ability. To address these issues, in this work, we propose a low-rank diffusion model for hyperspectral pansharpening by simultaneously leveraging the power of the pre-trained deep diffusion model and better generalization ability of Bayesian methods. Specifically, we assume that the HRHS image can be recovered from the product of two low-rank tensors, i.e., the base tensor and the coefficient matrix. The base tensor lies on the image field and has a low spectral dimension. Thus, we can conveniently utilize a pre-trained remote sensing diffusion model to capture its image structures. Additionally, we derive a simple yet quite effective way to pre-estimate the coefficient matrix from the observed LRHS image, which preserves the spectral information of the HRHS. Experimental results demonstrate that the proposed method performs better than some popular traditional approaches and gains better generalization ability than some DL-based methods. The code is released in https://github.com/xyrui/PLRDiff.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.