Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Feature-Balanced Loss for Long-Tailed Visual Recognition (2305.10772v1)

Published 18 May 2023 in cs.CV

Abstract: Deep neural networks frequently suffer from performance degradation when the training data is long-tailed because several majority classes dominate the training, resulting in a biased model. Recent studies have made a great effort in solving this issue by obtaining good representations from data space, but few of them pay attention to the influence of feature norm on the predicted results. In this paper, we therefore address the long-tailed problem from feature space and thereby propose the feature-balanced loss. Specifically, we encourage larger feature norms of tail classes by giving them relatively stronger stimuli. Moreover, the stimuli intensity is gradually increased in the way of curriculum learning, which improves the generalization of the tail classes, meanwhile maintaining the performance of the head classes. Extensive experiments on multiple popular long-tailed recognition benchmarks demonstrate that the feature-balanced loss achieves superior performance gains compared with the state-of-the-art methods.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.