Discounted Thompson Sampling for Non-Stationary Bandit Problems (2305.10718v2)
Abstract: Non-stationary multi-armed bandit (NS-MAB) problems have recently received significant attention. NS-MAB are typically modelled in two scenarios: abruptly changing, where reward distributions remain constant for a certain period and change at unknown time steps, and smoothly changing, where reward distributions evolve smoothly based on unknown dynamics. In this paper, we propose Discounted Thompson Sampling (DS-TS) with Gaussian priors to address both non-stationary settings. Our algorithm passively adapts to changes by incorporating a discounted factor into Thompson Sampling. DS-TS method has been experimentally validated, but analysis of the regret upper bound is currently lacking. Under mild assumptions, we show that DS-TS with Gaussian priors can achieve nearly optimal regret bound on the order of $\tilde{O}(\sqrt{TB_T})$ for abruptly changing and $\tilde{O}(T{\beta})$ for smoothly changing, where $T$ is the number of time steps, $B_T$ is the number of breakpoints, $\beta$ is associated with the smoothly changing environment and $\tilde{O}$ hides the parameters independent of $T$ as well as logarithmic terms. Furthermore, empirical comparisons between DS-TS and other non-stationary bandit algorithms demonstrate its competitive performance. Specifically, when prior knowledge of the maximum expected reward is available, DS-TS has the potential to outperform state-of-the-art algorithms.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.