Papers
Topics
Authors
Recent
2000 character limit reached

ACRoBat: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time (2305.10611v2)

Published 17 May 2023 in cs.LG

Abstract: Dynamic control flow is an important technique often used to design expressive and efficient deep learning computations for applications such as text parsing, machine translation, exiting early out of deep models and so on. The control flow divergence resulting from dynamic control flow makes batching, an important optimization enabling high throughput and hardware utilization, difficult to perform manually. In this paper, we present ACRoBat, a framework that enables efficient automatic batching for dynamic deep learning computations by performing hybrid static+dynamic compiler optimizations and end-to-end tensor code generation. ACRoBat performs up to 8.5X better than DyNet, a state-of-the-art framework for automatic batching, on an Nvidia GeForce GPU.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.