Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ACRoBat: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time (2305.10611v2)

Published 17 May 2023 in cs.LG

Abstract: Dynamic control flow is an important technique often used to design expressive and efficient deep learning computations for applications such as text parsing, machine translation, exiting early out of deep models and so on. The control flow divergence resulting from dynamic control flow makes batching, an important optimization enabling high throughput and hardware utilization, difficult to perform manually. In this paper, we present ACRoBat, a framework that enables efficient automatic batching for dynamic deep learning computations by performing hybrid static+dynamic compiler optimizations and end-to-end tensor code generation. ACRoBat performs up to 8.5X better than DyNet, a state-of-the-art framework for automatic batching, on an Nvidia GeForce GPU.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: