Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Invisible Backdoor Attacks in the Frequency Domain against Deep Neural Networks (2305.10596v1)

Published 10 May 2023 in cs.CR

Abstract: Deep neural networks (DNNs) have made tremendous progress in the past ten years and have been applied in various critical applications. However, recent studies have shown that deep neural networks are vulnerable to backdoor attacks. By injecting malicious data into the training set, an adversary can plant the backdoor into the original model. The backdoor can remain hidden indefinitely until activated by a sample with a specific trigger, which is hugely concealed, bringing serious security risks to critical applications. However, one main limitation of current backdoor attacks is that the trigger is often visible to human perception. Therefore, it is crucial to study the stealthiness of backdoor triggers. In this paper, we propose a novel frequency-domain backdooring technique. In particular, our method aims to add a backdoor trigger in the frequency domain of original images via Discrete Fourier Transform, thus hidding the trigger. We evaluate our method on three benchmark datasets: MNIST, CIFAR-10 and Imagenette. Our experiments show that we can simultaneously fool human inspection and DNN models. We further apply two image similarity evaluation metrics to illustrate that our method adds the most subtle perturbation without compromising attack success rate and clean sample accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.