Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Inverted Non-maximum Suppression for more Accurate and Neater Face Detection (2305.10593v1)

Published 17 May 2023 in cs.CV

Abstract: CNN-based face detection methods have achieved significant progress in recent years. In addition to the strong representation ability of CNN, post-processing methods are also very important for the performance of face detection. In general, the face detection method predicts several candidate bounding-boxes for one face. NMS is used to filter out inaccurate candidate boxes to get the most accurate box. The principle of NMS is to select the box with a higher score as the basic box and then delete the box which has a large overlapping area with the basic box but has a lower score. However, the current NMS method and its improved versions do not perform well when face image quality is poor or faces are in a cluster. In these situations, even after NMS filtering, there is often a face corresponding to multiple predicted boxes. To reduce this kind of negative result, in this paper, we propose a new NMS method that operates in the reverse order of other NMS methods. Our method performs well on low-quality and tiny face samples. Experiments demonstrate that our method is effective as a post-processor for different face detection methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube