Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Inverted Non-maximum Suppression for more Accurate and Neater Face Detection (2305.10593v1)

Published 17 May 2023 in cs.CV

Abstract: CNN-based face detection methods have achieved significant progress in recent years. In addition to the strong representation ability of CNN, post-processing methods are also very important for the performance of face detection. In general, the face detection method predicts several candidate bounding-boxes for one face. NMS is used to filter out inaccurate candidate boxes to get the most accurate box. The principle of NMS is to select the box with a higher score as the basic box and then delete the box which has a large overlapping area with the basic box but has a lower score. However, the current NMS method and its improved versions do not perform well when face image quality is poor or faces are in a cluster. In these situations, even after NMS filtering, there is often a face corresponding to multiple predicted boxes. To reduce this kind of negative result, in this paper, we propose a new NMS method that operates in the reverse order of other NMS methods. Our method performs well on low-quality and tiny face samples. Experiments demonstrate that our method is effective as a post-processor for different face detection methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)