Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sim-MEES: Modular End-Effector System Grasping Dataset for Mobile Manipulators in Cluttered Environments (2305.10580v1)

Published 17 May 2023 in cs.RO and cs.AI

Abstract: In this paper, we present Sim-MEES: a large-scale synthetic dataset that contains 1,550 objects with varying difficulty levels and physics properties, as well as 11 million grasp labels for mobile manipulators to plan grasps using different gripper modalities in cluttered environments. Our dataset generation process combines analytic models and dynamic simulations of the entire cluttered environment to provide accurate grasp labels. We provide a detailed study of our proposed labeling process for both parallel jaw grippers and suction cup grippers, comparing them with state-of-the-art methods to demonstrate how Sim-MEES can provide precise grasp labels in cluttered environments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.