Generating Bayesian Network Models from Data Using Tsetlin Machines
Abstract: Bayesian networks (BN) are directed acyclic graphical (DAG) models that have been adopted into many fields for their strengths in transparency, interpretability, probabilistic reasoning, and causal modeling. Given a set of data, one hurdle towards using BNs is in building the network graph from the data that properly handles dependencies, whether correlated or causal. In this paper, we propose an initial methodology for discovering network structures using Tsetlin Machines.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.