Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Statistical Knowledge Assessment for Large Language Models (2305.10519v2)

Published 17 May 2023 in cs.CL and cs.LG

Abstract: Given varying prompts regarding a factoid question, can a LLM reliably generate factually correct answers? Existing LLMs may generate distinct responses for different prompts. In this paper, we study the problem of quantifying knowledge contained in an LLM regarding a given set of facts. We propose KaRR, a statistical approach to assess factual knowledge for LLMs. The main idea is to estimate the ratio of LLM generating text corresponding to the answer entity given diverse prompts of the subject and the querying relation, versus it generating by random chances. Our assessment suite contains a comprehensive set of 994,123 entities and 600 relations, with 1,395,905 text aliases. We use our method to evaluate 20 LLMs of various sizes, including LLaMA, Alpaca, OPT, etc. Experiments show that our results have a strong correlation (0.43 Kendall's $\tau$) with the results of human assessment on LLMs. Our results reveal that the knowledge in LLMs with the same backbone architecture adheres to the scaling law, while tuning on instruction-following data sometimes compromises the model's capability to generate factually correct text reliably.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.